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1 INTRODUCTION
The process of benchmarking software on numerous queries can
produce a large amount of information, such as program execu-
tion runtimes and properties of each input query. Effectively using
this information to gain new insights into program performance
and correctness is challenging. In response to this difficulty, we
developed Aiutare: a modular benchmarking framework that runs
on a set of user-defined programs and their input benchmark files.
Aiutare helps researchers by abstracting the benchmarking and
data storage processes, allowing users to easily manipulate output
for visualization, plotting, and testing. In this paper, we introduce
the framework and demonstrate its flexibility by applying it to find
bugs in the solutions generated by popular SMT solvers.

2 DESCRIPTION OF AIUTARE
Aiutare is a Python program outlined in Fig. 1 and detailed be-
low. We chose Python for the project as all University of Toronto
computer science students are familiar with the language.

2.1 Inputs
The user provides Aiutare with a file named config.py which
consists of a dictionary containing the following items:

(1) A set of P programs (1.1), provided as a list of filepaths
to the program executables, including any command-line
arguments.

(2) A set of F input files (1.2), provided as a list of filepaths. All
P programs provided should be able to run these input files
and print output to the console.

(3) A set of P schemas (1.3), provided as a list of filepaths to
Python files. We provide default schemas to record program
runtime and answers, but the user can optionally write a
custom schema in the form of a Python function for each
program.

Figure 1: Aiutare framework architecture.

2.2 Subprocess Manager
The Subprocess Manager (2) uses Python’s subprocess module to
run every program on every input file in parallel. The Popen inter-
face is used to execute child programs; each invocation consists

of a filepath to the program executable (1.1) including any desired
command-line arguments, and the filepath of the input file (1.2). A
complete invocation should be able to run directly in the terminal
and have the format:

path/to/program_exe -arg=true test_input_file.txt

2.3 Output Parser
After terminating, each child program spawned by the Subprocess
Manager (2) has its console output redirected to the Output Parser
(3). Here, the appropriate program-specific schema (1.3) provided
by the user is called to parse this output text into a dictionary
of variables describing the performance and results of the child
program. This dictionary is then written to Aiutare’s MongoDB
database (4) as a MongoEngine schema object [2].

2.4 MongoDB Database
Once the Output Parser (3) finishes writing all results to the Mon-
goDB database (4), Aiutare terminates and prints a summary of
the benchmarking to the console. The results of the database can
then be easily queried as MongoEngine objects or by using any
compatible library or application, such as the MongoDB Compass
GUI [1]. MongoDB was chosen as the database for Aiutare because
it requires no adherence to fixed schemas or knowledge of SQL.

3 EVALUATION
We use a domain-specific instantiation of Aiutare to evaluate its
effectiveness. We aim to answer RQ1: given a research question
RQD in domain D, can Aiutare be adapted to generate meaningful
results to aid in answering RQD?

We selected satisfiability modulo theories (SMT) solvers as our
domain and asked the research question RQSMT : can we develop a
method to systematically validate the solutions produced by SMT
solvers in order to catch bugs in these tools?

To the best of our knowledge, no systematic validation of SMT
solver solutions exists in the literature, making our bug identi-
fication method a useful contribution to the field of SMT solver
research.

3.1 Domain: SMT Solvers
SMT solvers take SMT queries as input; a query is in the form of a
set of variables and a set of constraints on these variables, as seen
in Fig. 2.

The solver outputs the answer SAT if all constraints can be
satisfied simultaneously, or UNSAT otherwise. If the solver answers
SAT, then it also provides a solution: an SMT query with a concrete
value assigned to each variable, as shown in Fig. 3.

SMT queries and SMT solver outputs are also easy to manipulate
without modification due to standardization under SMT-LIB [3];
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String x y + x = n +m
String y n = ""
Stringm len(x ) = int(m)
String n

variables constraints

Figure 2: Example SMT Query.

String x = "" y + x = n +m
String y = "0" n = ""
Stringm = "0" len(x ) = int(m)
String n = ""

Figure 3: Example SMT Solution.

this consistency allowed us to provide Aiutare with a single schema
to handle output from all SMT solvers, simplifying our development
process.

3.2 Setup
Our approach to answer RQSMT consists of two calls to Aiutare
and a database parsing procedure.

In the first Aiutare call, the user inputs are:
(1) programs = an arbitrary number of SMT solvers.
(2) input files = an arbitrary number of SMT queries.
(3) schemas = modified Python functions that also write solver-

produced solutions to the database every time a solver re-
turns SAT.

Next, the second Aiutare call takes as inputs:
(1) programs = all SMT solvers.
(2) input files = all solver-produced solutions stored in the

database after the first Aiutare call.
(3) schemas = default schemas to record answers of SAT /UNSAT.
Once Aiutare has populated the database with these results, the

remainder of the approach filters through the data, highlighting
each program run where a solver called on an SMT query produced
an erroneous answer and/or solution (Fig. 4). One bug type occurs
when a solver answers UNSAT but a counterexample in the form
of a supported solution disproves this answer. Another bug type
occurs when a solution is deemed UNSAT by one or more solvers.

Figure 4: Two Types of Bugs.
We selected three versions of Z3 and CVC4 to evaluate:
• z3_seq – Z3 using seq, the default string solver.
• z3_str3 – Z3 using Z3str3 [4], a new alternative string solver.
• cvc4 – CVC4 using the default string solver [5].

We ran these solvers on 17,936 SMT queries generated by the Kudzu
symbolic execution framework [6].

We implemented our approach in less than 200 lines of Python,
and ran the configuration of Aiutare located at https://github.com/
FinnbarrOC/aiutare on a machine running 64-bit Ubuntu 18.04.
Most of the script interacts with well-documented MongoDB APIs,
requiring no knowledge of the inner workings of Aiutare. This
level of abstraction combined with reliance on common MongoDB
libraries ensures that Aiutare is easy to modify and use.

3.3 Results
We were able to systematically find nine bugs: three unsupported
solutions and four disproven answers of UNSAT with z3_seq, and
two unsupported solutions with cvc4.

An example bug taken from the test set of queries is shown in
Fig. 5. This subtle bug is hard to catch because z3_seq gave the
correct result, SAT, but provided the wrong solution.

String x = ""
String y = ""
Stringm = ""
String n = ""
y + x = n +m
n = ""
len(x) = int(m)

String x = ""
String y = "0"
Stringm = "0"
String n = ""
y + x = n +m
n = ""
len(x ) = int(m)

Figure 5: Bugged vs. Correct Solution.

Therefore, we positively answer RQSMT and RQ1.

4 SUMMARY AND FUTUREWORK
Overall, we adapted Aiutare to analyze SMT solvers and answer
a domain-specific research question, showcasing the flexibility of
our framework. Our case study demonstrated that Aiutare can be
used to find real-world bugs in current industrial software.

In the future, we plan to apply Aiutare to analyze the runtime
performance of SMT and SAT solvers, test verification tools and
equivalence checkers, and generate plots and regression models to
describe program performance metrics.
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