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1 Introduction

Mutated cells that proliferate uncontrollably, known as tumors (or nodules when ď 3cm in diameter),
are often detected at very late stages when occurring in the lungs. With one of the lowest 5 year net
survival rates amongst cancers, lung cancer is one of the deadliest cancers, making early and accurate
diagnosis especially important.

X-ray radiographs are a relatively inexpensive and accessible diagnostic test which measure the intensity
loss of X-rays passing through the body in a 2D image. In recent studies, neural networks trained
with real X-ray radiographs have shown reasonably accurate disease detection rates, with up to 74-91%
sensitivity and 75-91% specificity depending on the lung abnormality [1]. However, due to confidentiality
regulations, real-patient datasets are scarce, which suggests the need for synthetic X-rays (See Figure 1).

Using X-ray Computed Tomography (CT) scans as 3D models of a body, nodules of various shapes, sizes,
and radiodensities can be inserted into the CT scan. By inserting nodules at various lung positions, we
can generate a large set of diverse synthetic chest X-rays to train a neural network to detect early stage
lung cancer (See Figure 2).

Figure 1: A real X-ray (left) and a synthetic X-ray (right).

2 Approach

(See full reports [2], [3] and video [4])

A CT scan can be visualized as a 3D array of cuboid-shaped units called volumetric pixels (voxels),
which are the smallest part of a 3D object. The value of each voxel of the visualization represents the
radiodensity of the medium. Radiodensity, measured in Hounsfield Units (HU), is the relative amount
of energy absorbed by a medium.

To synthesize an X-ray image, a ray connecting the point source to each pixel of the resulting X-ray
image is simulated. For each ray, the intersecting distance of each voxel along its path is calculated. The
parallel-ray approach was initially used as an approximation of the more realistic point source approach
(with the point source infinitely far away from the CT scan) for its faster runtime. The development
of an efficient ray-tracing voxel traversal algorithm allowed for the use of the more flexible point source
approach. Beer’s law can then relate the respective intersecting distances and radiodensities to the ray’s
remaining intensity, which can be translated to a grayscale value to fill in each pixel of the X-ray image.

Dual-energy soft tissue X-rays allow for an unobstructed view of the lungs by subtracting the bones
from the image to avoid nodules from being concealed by the ribs. To mimic their effect, all voxels with
bone-like radiodensities are replaced with the radiodensity of water prior to tracing the rays.

Growing the nodules to obtain realistic shapes took several tries. The dispersed model, which we explored
initially, simulated lung infections rather than lung cancer. Now, the more realistic lobulated model
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consists of a large central sphere and iteratively added hemispheres of random sizes at random positions
on the surface of the existing shape. Once the nodule shape is generated, it is inserted into the voxel
array by modifying the radiodensity values in a certain region of the CT array.

Positions for nodule growth within the CT array are randomly selected from the lung voxels, which can
be segmented using a breadth-first search derived algorithm. Two starting positions within each lung are
manually selected and neighbouring voxels are explored if their radiodensity values fall within an upper
and lower lung radiodensity threshold.

To normalize the grayscale image produced by the ray tracing voxel traversal algorithm, a series of image
processing techniques are employed. The images are first rotated and flipped to match the common chest
X-ray orientation. Using interpolation methods, images are then resized to the neural network’s input
size of 256 x 256 pixels. Finally, gamma correction and histogram equalization help spread the cluster
of high intensity pixels, adjusting the image contrast.

Different aspects of the project have been programmed in the most suitable languages. Python’s NumPy
was used to handle large matrices, C++ was used for its flexibility in memory allocation, and MatLab
was used for its Image Processing Toolbox.

3 Analysis

After training a neural network with a batch of 2000 synthetic X-rays produced from 6 CT scans using
the parallel-ray approach, poor sensitivity was observed. The hypothesis was that a low number of CT
scans forced the neural network to recognize patient bodies over nodule presence. The next batch of
X-rays will utilize more CT scans, segment lungs for more randomized nodule placement, and use the
randomized point source approach for added variance. It will also have more clear bone removal and
more accurate contrast. After obtaining more CT scans, we hope to inspect and remove any corrupted or
suboptimal CT scans to create approximately 20000 X-rays of training data. This can help us understand
if we are making progress on the path towards generating effective synthetic training data.

Reducing space and time complexity was essential to produce thousands of X-rays efficiently. We im-
plemented the ray tracing algorithm and made the empty X-rays from empty CT scans first. Then, we
only traced around inserted nodules in the CT scan to update certain “chunks” of the X-ray images to
vastly improve the space and time complexity.

4 Future Work

Implementing a Generative Adversarial Network (GAN) may generate more realistic synthetic X-rays [5].
Previous research with GANs on frontal chest X-rays has shown promising results for lung abnormalities.

Additionally, considering ways of creating a balanced training dataset based on prevalence of various
aspects such as size, shape, location, or radiodensity may help the neural network identify nodules more
naturally. Furthermore, along with the frontal X-rays, it may be useful to train the neural network with
lateral X-rays because it may reduce the possibility of nodules blending in with surrounding tissues.
With better results, we can develop different methods of nodule generation for more variation in shape
and explore other lung abnormalities in the future.
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Figure 2: Examples of an assortment of synthetic X-rays, with and without nodules, generated from
the 36 CT scans that we currently possess. Nodules are circled in red. Note that some of the nodules
are hard to see by eye as they might be hiding behind the heart, might be nodules on the borders of the
lungs (snowball lesions), might have low radiodensity, or might be blending into the surrounding tissues.
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